\qquad
\qquad Date \qquad

$0-1$

Practice

Roots and Radical Expressions

Find all the real square roots of each number.

1. 625
2. -1.44
3. $\frac{16}{81}$

Find all the real cube roots of each number.
4. -216
5. $\frac{1}{64}$
6. 0.027

Find all the real fourth roots of each number.
7. 0.2401
8. 1
9. -1296

Find each real root. To start, find a number whose square, cube, or fourth is equal to the radicand.
10. $\sqrt{400}$
11. $-\sqrt[4]{256}$
12. $\sqrt[3]{-729}$
$=\sqrt{(20)^{2}}$

Simplify each radical expression. Use absolute value symbols when needed. To start, write the factors of the radicand as perfect squares, cubes, or fourths.
13. $\sqrt{25 x^{6}}$
14. $\sqrt[3]{343 x^{9} y^{12}}$
15. $\sqrt[4]{16 x^{16} y^{20}}$
$=\sqrt{(5)^{2}\left(x^{3}\right)^{2}}$
\qquad
\qquad Date \qquad

B-1

Practice (continued)

Roots and Radical Expressions

16. The formula for the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$. Solving for r, the radius of a sphere is $r=\sqrt[3]{\frac{3 V}{4 \pi}}$. If the volume of a sphere is $20 \mathrm{ft}^{3}$, what is the radius of the sphere to the nearest hundredth?

Find the two real solutions of each equation.
17. $x^{4}=81$
18. $x^{2}=144$
19. $x^{4}=\frac{2401}{625}$
20. Writing Explain how you know whether or not to include the absolute value symbol on your root.
21. Open-Ended Write a radical that has no real values.
22. Reasoning There are no real nth roots of a number b. What can you conclude about the index n and the number b ?

